4．7 Brownian Bridge

黃于珊

4.7.1 Gaussian Process

Definition 4.7.1:

A Gaussian process $X(t), t \geq 0$, is a stochastic process that has the property that, for arbitrary times $0<t_{1}<t_{2}<\ldots<t_{n}$, the random variables $X\left(t_{1}\right), \overline{X\left(t_{2}\right)}, \ldots, X\left(t_{n}\right)$ are jointly normally distributed.

- The joint normal distribution of a set of vectors is determined by their means and covariances.
More generally, a random column vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{tr}}$, where the superscript tr denotes transpose, is jointly normal if it has joint density
$f_{\mathbf{X}}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(C)}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu) C^{-1}(\mathbf{x}-\mu)^{\mathrm{tr}}\right\}$.
In equation (2.2.18), $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a row vector of dummy variables, $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is
the row vector of expectations, and C is the positive definite matrix of covariances.
- For a Gaussian process, the joint distribution of $X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)$ is determined by the means and covariances of these random variables.
- We denote the mean of $X(t)$ by $m(t)$, and, for $s \geq 0, t \geq 0$, we denote the covariance of $X(s)$ and $X(t)$ by $c(s, t)$; i.e., $m(t)=E X(t), c(s, t)=E[(X(s)-m(s))(X(t)-m(t))]$

Example 4.7.2 (Brownian motion)

Brownian motion $W(t)$ is a Gaussian process.
For $0<t_{1}<t_{2}<\ldots<t_{n}$, the increments

$$
\begin{aligned}
& I_{1}=W\left(t_{1}\right), I_{2}=W\left(t_{2}\right)-W\left(t_{1}\right), \ldots, I_{n}=W\left(t_{n}\right)-W\left(t_{n-1}\right) \\
& W\left(t_{0}\right)=0
\end{aligned}
$$

are independent and normally distributed.
Increments over nonoverlapping time intervals are independent $\mathrm{W}(\mathrm{t})-\mathrm{W}(\mathrm{s}) \sim \mathrm{N}(0, \mathrm{t}-\mathrm{s})$

Writing

$$
\begin{gathered}
\mathrm{W}\left(\mathrm{t}_{2}\right)=\mathrm{W}\left(\mathrm{t}_{1}\right)+\mathrm{I}_{2} \\
W\left(t_{1}\right)=I_{1}, W\left(t_{2}\right)=\sum_{j=1}^{2} I_{j}, \ldots, W\left(t_{n}\right)=\sum_{j=1}^{n} I_{j},
\end{gathered}
$$

Example 4.7.2 (Brownian motion)

$$
0<t_{1}<t_{2}<\ldots<t_{n}
$$

- The random variables $W\left(t_{1}\right), W\left(t_{2}\right), \ldots, W\left(t_{n}\right)$ are jointly normally distributed. Gaussian process
Independent normal random variables are jointly normal.
$\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{n}}$ are jointly normal
Linear combinations of jointly normal random variables are jointly normal.
- The mean function for Brownian motion is

$$
m(t)=E W(t)=0
$$

Example 4.7.2 (Brownian motion)

- We may compute the covariance by letting $0 \leq$ $s \leq t$ be given and noting that
$\mathrm{E}[\mathrm{W}(\mathrm{s}) \mathrm{W}(\mathrm{t})]-\mathrm{E}[\mathrm{W}(\mathrm{s})] \mathrm{E}[\mathrm{W}(\mathrm{t})]$
$c(s, t)=E[W(s) W(t)]=E[W(s)(W(t)-W(s)+W(s))]$
$=E[W(s)(W(t)-W(s))]+E\left[W^{2}(s)\right]$
- Because $W(s)$ and $W(t)-W(s)$ are independent and both have mean zero, we see that

$$
E[W(s)(W(t)-W(s))]=0
$$

Example 4.7.2 (Brownian motion)

$$
\begin{aligned}
& c(s, t)=E[W(s) W(t)]=E[W(s)(W(t)-W(s)+W(s))] \\
& =E[W(s)(W(t)-W(s)]]+E\left[W^{2}(s)\right]
\end{aligned}
$$

- The other term, $E\left[W^{2}(s)\right]$, is the variance of $W(s)$, which is s.
$\mathrm{E}\left[\mathrm{W}^{2}(\mathrm{~s})\right]-(\mathrm{E}[\mathrm{W}(\mathrm{s})])^{2}$
$\operatorname{Var}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]=t_{i+1}-t_{i}$.

Example 4.7.2 (Brownian motion)

- We conclude that $c(s, t)=s$ when $0 \leq s \leq t$.
- Reversing the roles of s and t, we conclude that $c(s, t)=t$ when $0 \leq t \leq s$.
- In general, the covariance function for Brownian motion is then

$$
c(s, t)=s \wedge t
$$

where $s \wedge t$ denotes the minimum of s and t.

Example 4.7.3

(Itô integral of a deterministic integrand)

- Let $\Delta(t)$ be a nonrandom function of time, and define

$$
I(t)=\int_{0}^{t} \Delta(s) d W(s)
$$

where $W(t)$ is a Brownian motion. Then $I(t)$ is a Gaussian process, as we now show.

- In the proof of Theorem 4.4.9, we showed that, for fixed $u \in R$, the process

$$
M_{u}(t)=\exp \left\{u I(t)-\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s\right\}
$$

is a martingale.

Example 4.7.3

(Itô integral of a deterministic integrand)

- Then

$$
M_{u}(t)=\exp \left\{u I(t)-\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s\right\} \text { is a martingale. }
$$

$$
1=M_{u}(0)=E M_{u}(t)=e^{-\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s} \cdot E e^{u I(t)}
$$

and we thus obtained the moment-generating
function formula

$$
E e^{u I(t)}=e^{\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s}
$$

(with mean zero and variance $\left.\int_{0}^{t} \frac{=e^{t \mu+t^{2} \sigma^{2} / 2}}{\Delta^{2}(s) d s}\right)$

- $\mathrm{I}(\mathrm{t}) \sim \mathrm{N}\left(0, \int_{0}^{t} \Delta^{2}(s) d s\right)$

Example 4.7.3

(Itô integral of a deterministic integrand)

- We have shown that $I(t)$ is normally distributed, verification that the process is Gaussian requires more.
- Verify that, for $0<t_{1}<t_{2}<\ldots<t_{n}$, the random variables $I\left(t_{1}\right), I\left(t_{2}\right), \ldots, I\left(t_{n}\right)$ are jointly normally distributed.

Example 4.7.3

(Itô integral of a deterministic integrand)

- It turns out that the increments

$$
\mathrm{I}(\mathrm{t}) \sim \mathrm{N}\left(0, \int_{0}^{t} \Delta^{2}(s) d s\right)
$$

$$
I\left(t_{1}\right)-I(\theta)=I\left(t_{1}\right), I\left(t_{2}\right)-I\left(t_{1}\right), \ldots, I\left(t_{n}\right)-I\left(t_{n-1}\right)
$$

are normally distributed and independent(p.14), and from this the joint normality of $I\left(t_{1}\right), I\left(t_{2}\right), \ldots, I\left(t_{n}\right)$ follows by the same argument as used in Example 4.7.2 for Brownian motion.

$$
\begin{aligned}
& \mathrm{I}\left(\mathrm{t}_{1}\right)=\left(\mathrm{I}\left(\mathrm{t}_{1}\right)-\mathrm{I}(0)\right) \\
& \mathrm{I}\left(\mathrm{t}_{2}\right)=\left(\mathrm{I}\left(\mathrm{t}_{2}\right)-\mathrm{I}\left(\mathrm{t}_{1}\right)\right)+\left(\mathrm{I}\left(\mathrm{t}_{1}\right)-\mathrm{I}(0)\right)
\end{aligned}
$$

Independent normal random variables are jointly normal.
$\left(\mathrm{I}\left(\mathrm{t}_{1}\right)-\mathrm{I}(0)\right),\left(\mathrm{I}\left(\mathrm{t}_{2}\right)-\mathrm{I}\left(\mathrm{t}_{1}\right)\right), \ldots,\left(\mathrm{I}\left(\mathrm{t}_{\mathrm{n}}\right)-\mathrm{I}\left(\mathrm{t}_{\mathrm{n}-1}\right)\right)$ are jointly normal
Linear combinations of jointly normal random variables are jointly normal.

Example 4.7.3

(Itô integral of a deterministic integrand)

- Next, we show that, for $0<t_{1}<t_{2}$, the two random increments $I\left(t_{1}\right)-I(0)=I\left(t_{1}\right)$ and $I\left(t_{2}\right)-I\left(t_{1}\right)$ are normally distributed and independent.
- The argument we provide can be iterated to prove this result for any number of increments.

Example 4.7.3

(Itô integral of a deterministic integrand)

- For fixed $u_{2} \in R$, the martingale property of $\mathrm{M}_{\mathrm{u}_{2}}$ implies that

$$
M_{u_{2}}\left(t_{1}\right)=E\left[M_{u_{2}}\left(t_{2}\right) \mid F\left(t_{1}\right)\right]
$$

- Now let $u_{1} \in R$ be fixed. Because $\frac{M_{u_{1}}\left(t_{1}\right)}{M_{u_{2}}\left(t_{1}\right)}$ is $\mathrm{F}\left(\mathrm{t}_{1}\right)$ measurable, we may multiply the equation above by this quotient to obtain

$$
\begin{aligned}
& M_{u_{1}}\left(t_{1}\right)=E\left[\left.\frac{M_{u_{1}}\left(t_{1}\right) M_{u_{2}}\left(t_{2}\right)}{M_{u_{2}}\left(t_{1}\right)} \right\rvert\, F\left(t_{1}\right)\right] M_{u}(t)=\exp \left\{u I(t)-\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s\right\} \\
& =E\left[\left.\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)-\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s-\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\} \right\rvert\, F\left(t_{1}\right)\right]
\end{aligned}
$$

Example 4.7.3

(Itô integral of a deterministic integrand)

$$
M_{u_{1}}\left(t_{1}\right)=E\left[\left.\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)-\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s-\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\} \right\rvert\, F\left(t_{1}\right)\right]
$$

- We now take expectations

$$
\begin{aligned}
& M_{u}(t)=\exp \left\{u I(t)-\frac{1}{2} u^{2} \int_{0}^{t} \Delta^{2}(s) d s\right\} \\
& 1=M_{u_{1}}(0)=E M_{u_{1}}\left(t_{1}\right) \\
& \left.\begin{array}{c}
\mathbb{E}(\mathbb{E}[X \mid \mathcal{G}]) \\
=\mathbb{E} X
\end{array}\right\}=E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)-\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s-\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\}\right] \\
& =E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right\}\right] \cdot \exp \left\{-\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s-\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\}
\end{aligned}
$$

- Where we have used the fact that $\Delta^{2}(\mathrm{~s})$ is nonrandom to take the integrals of $\Delta^{2}(\mathrm{~s})$ outside the expectation on the right-hand side. 16

Example 4.7.3

(Itô integral of a deterministic integrand)

$$
1=E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right\}\right] \cdot \exp \left\{-\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}^{1}} \Delta^{2}(s) d s-\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\}
$$

- This leads to the moment-generating function formula $E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right\}\right]$

$$
=\exp \left\{\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s\right\} \cdot \exp \left\{\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\}
$$

Example 4.7.3

(Itô integral of a deterministic integrand)

$$
\begin{aligned}
& E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right\}\right] \\
& =\exp \left\{\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s\right\} \cdot \exp \left\{\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\}
\end{aligned}
$$

- The right hand side is the product of
- the moment-generating function for a normal random variable with mean zero and variance $\int_{0}^{t_{1}} \Delta^{2}(s) d s$
- the moment-generating function for a normal random variable with mean zero and variance $\int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s$
$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& M_{X}(t)=\mathbb{E}\left(e^{t X}\right) \\
&=e^{t \mu+t^{2} \sigma^{2} / 2}
\end{aligned}
$$

Example 4.7.3

(Itô integral of a deterministic integrand)

$$
\begin{aligned}
& E\left[\exp \left\{u_{1} I\left(t_{1}\right)+u_{2}\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right\}\right] \quad \mathrm{I}(\mathrm{t}) \sim \mathrm{N}\left(0, \int_{0}^{t} \Delta^{2}(s) d s\right) \\
& =\exp \left\{\frac{1}{2} u_{1}^{2} \int_{0}^{t_{1}} \Delta^{2}(s) d s\right\} \cdot \exp \left\{\frac{1}{2} u_{2}^{2} \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right\} \\
\mathbf{I}\left(\mathrm{t}_{1}\right) & \sim \mathrm{N}\left(0, \int_{0}^{t_{1}} \Delta^{2}(s) d s\right) \quad \mathbf{I}\left(\mathrm{t}_{2}\right)-\mathbf{I}\left(\mathrm{t}_{1}\right) \sim \mathrm{N}\left(0, \int_{t_{1}}^{t_{2}} \Delta^{2}(s) d s\right)
\end{aligned}
$$

- It follows that $I\left(t_{l}\right)$ and $I\left(t_{2}\right)-I\left(t_{l}\right)$ must have these distributions, and because their joint moment-generating function factors into this product of moment-generating functions, they must be independent.

Example 4.7.3

(Itô integral of a deterministic integrand)

$\mathrm{E}\left[\mathrm{I}\left(\mathrm{t}_{1}\right) \mathrm{I}\left(\mathrm{t}_{2}\right)\right]-\mathrm{E}\left[\left(\mathrm{t}_{1}\right)\right] \mathrm{E}\left[1\left(\mathrm{t}_{2}\right)\right]$

- We have $c\left(t_{1}, t_{2}\right)=E\left[I\left(t_{1}\right) I\left(t_{2}\right)\right]=E\left[I\left(t_{1}\right)\left(I\left(t_{2}\right)-I\left(t_{1}\right)+I\left(t_{1}\right)\right)\right]$

$$
=E\left[I\left(t_{1}\right)\left(I\left(t_{2}\right)-I\left(t_{1}\right)\right)\right]+E I^{2}\left(t_{1}\right) \quad \mathbb{E} I^{2}(t)=\int_{0}^{t} \Delta^{2}(s) d s
$$

$$
=E I\left(t_{1}\right) \cdot E\left[I\left(t_{2}\right)-I\left(t_{1}\right)\right]+\int_{0}^{t_{1}} \Delta^{2}(s) d s
$$

$$
=\int_{0}^{t_{1}} \Delta^{2}(s) d s \quad 0<t_{1}<t_{2}
$$

- For the general case where $\mathrm{s} \geq 0$ and $\mathrm{t} \geq 0$ and we do not know the relationship between s and t, we have the covariance formula

$$
c(s, t)=\int_{0}^{s \wedge t} \Delta^{2}(u) d u
$$

4.7.2 Brownian Bridge as a Gaussian Process

Definition 4.7.4.

Let $W(t)$ be a Brownian motion. Fix $T>0$. We define the Brownian bridge from 0 to 0 (p.22) on $[0, T]$ to be the process

$$
\begin{equation*}
X(t)=W(t)-\frac{t}{T} W(T), 0 \leq t \leq T \tag{4.7.2}
\end{equation*}
$$

4.7.2 Brownian Bridge as a Gaussian Process

$$
X(t)=W(t)-\frac{t}{T} W(T), 0 \leq t \leq T
$$

- The process $X(t)$ satisfies

$$
X(0)=X(T)=0 \quad \begin{array}{ll}
\mathrm{t}=0 & \mathrm{X}(0)=\mathrm{W}(0)-0=0 \\
\mathrm{t}=\mathrm{T} & \mathrm{X}(\mathrm{~T})=\mathrm{W}(\mathrm{~T})-\mathrm{W}(\mathrm{~T})=0
\end{array}
$$

- Because $W(T)$ enters the definition of $X(t)$ for $0 \leq t \leq T$, the Brownian bridge $X(t)$ is not adapted to the filtration $F(\mathrm{t})$ generated by $W(\mathrm{t})$.

4.7.2 Brownian Bridge as a Gaussian Process

$$
X(t)=W(t)-\frac{t}{T} W(T), 0 \leq t \leq T
$$

- For $0<\mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{\mathrm{n}}<\mathrm{T}$, the random variables

$$
X\left(t_{1}\right)=W\left(t_{1}\right)-\frac{t_{1}}{T} W(T), \ldots, X\left(t_{n}\right)=W\left(t_{n}\right)-\frac{t_{n}}{T} W(T)
$$

are jointly normal because $W\left(t_{1}\right), \ldots, W\left(t_{n}\right)$, $\overline{W(T)}$ are jointly normal.
p. 6 Example 4.7.2

Linear combinations of jointly normal random variables are jointly normal.

- Hence, the Brownian bridge from 0 to 0 is a Gaussian process.

4.7.2 Brownian Bridge as a Gaussian Process

- Its mean function is easily seen to be

$$
\begin{aligned}
X(t)=W(t)-\frac{t}{T} W(T) \\
m(t)=E X(t)=E\left[W(t)-\frac{t}{T} W(T)\right]=0
\end{aligned}
$$

- For $s, t \in(0, T)$, we compute the covariance function $\mathrm{E}[\mathrm{X}(\mathrm{s}) \mathrm{X}(\mathrm{t})]-\mathrm{E}[\mathrm{X}(\mathrm{s})] \mathrm{E}[\mathrm{X}(\mathrm{t})]$

$$
\begin{gathered}
\mathrm{X}(\mathrm{~s}) \mathrm{X}(\mathrm{t}) \\
c\left(\mathrm{~s}, t^{\prime}\right)=E\left[\left(W(s)-\frac{s}{T} W(T)\right)\left(W(t)-\frac{t}{T} W(T)\right)\right] E[W(s) W(t)]=s \wedge t
\end{gathered}
$$

$$
=E[W(s) W(t)]-\frac{t}{T} E[W(s) W(T)]-\frac{s}{T} E[W(t) W(T)]+\frac{s t}{T^{2}} E W^{2}(T)
$$

$$
=s \wedge t-\frac{2 s t}{T}+\frac{s t}{T}=s \wedge t-\frac{s t}{T}
$$

4.7.2 Brownian Bridge as a Gaussian Process

Definition 4.7.5.

Let $W(t)$ be a Brownian motion. Fix $T>0, a \in R$ and $b \in R$. We define the Brownian bridge from a to b on $[0, T]$ to be the process
Gaussian process

$$
X^{a \rightarrow b}(t)=a+\frac{(b-a) t}{T}+\underline{X(t)}, 0 \leq t \leq T
$$

where $X(t)=X^{0 \rightarrow 0}$ is the Brownian bridge from 0 to 0 .
Begins at a at time 0 and ends at b at time T .

$$
\begin{array}{lll}
\mathrm{t}=0 & X^{a \rightarrow b}(0)=\mathrm{a}+0+\mathrm{X}(0)=\mathrm{a} & \\
\mathrm{t}=\mathrm{T} & X^{a \rightarrow b}(\mathrm{~T})=\mathrm{a}+(\mathrm{b}-\mathrm{a})+\mathrm{X}(\mathrm{~T})=\mathrm{b} & X(0)=X(T)=0
\end{array}
$$

Adding a nonrandom function to a Gaussian process gives us another Gaussian process.

4.7.2 Brownian Bridge as a Gaussian Process

- The mean function is affected: $X^{a \rightarrow b}(t)=a+\frac{(b-a) t}{T}+X(t)$

$$
m^{a \rightarrow b}(t)=E X^{a \rightarrow b}(t)=a+\frac{(b-a) t}{T} E X(t)=0
$$

- However, the covariance function is not affected:

$$
\begin{aligned}
& c^{a \rightarrow b}(s, t)=E\left[\left(X^{a \rightarrow b}(s)-m^{a \rightarrow b}(s)\right)\left(X^{a \rightarrow b}(t)-m^{a \rightarrow b}(t)\right)\right]=s \wedge t-\frac{s t}{T} \\
& \begin{array}{l}
=\mathrm{E}\left[\left(\left(a+\frac{(b-a) s}{T}+X(s)\right)-\left(\mathrm{a}+\frac{(b-a) s}{T}\right)\right)\left(\left(a+\frac{(b-a) t}{T}+X(t)\right)-\left(a+\frac{(b-a) t}{T}\right)\right)\right] \\
=\mathrm{E}[\mathrm{X}(\mathrm{~s}) \mathrm{X}(\mathrm{t})] \\
\mathrm{E}[\mathrm{X}(\mathrm{~s}) \mathrm{X}(\mathrm{t})]=s \wedge t-\frac{s t}{T}
\end{array}
\end{aligned}
$$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- We cannot write the Brownian bridge as a stochastic integral of a deterministic integrand because the variance of the Brownian bridge,

$$
E X(t)=0 \quad E X^{2}(t)=c(t, t)=t-\frac{t^{2}}{T}=\frac{t(T-t)}{T} \quad \begin{gathered}
X(s) \times(t) \\
c(s, t)=s \wedge t-\frac{s t}{T}
\end{gathered}
$$

increases for $0 \leq t \leq T / 2$ and then decreases for

$$
T / 2 \leq t \leq T .
$$

- In Example 4.7.3, the variance of $I(t)=\int_{0}^{t} \Delta(u) d W(u)$ is $\int_{0}^{t} \Delta^{2}(u) d u$, which is nondecreasing in t.

$$
\begin{gathered}
\text { F.O.C } 1-\frac{2 t}{T}=0 \\
\mathrm{t}=\frac{T}{2} \\
\text { S.O.C }-\frac{2}{T}<0
\end{gathered}
$$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- We can obtain a process with the same distribution as the Brownian bridge from 0 to 0 as a scaled stochastic integral.

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- Consider

$$
Y(t)=(T-t) \int_{0}^{t} \frac{1}{T-u} d W(u), 0 \leq t<T
$$

- The integral $I(t)=\int_{0}^{t} \frac{1}{T-u} d W(u)$
is a Gaussian process of the type discussed in Example 4.7.3, provided $t<T$ so the integrand is defined.

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- For $0<t_{1}<t_{2}<\ldots<t_{n}<T$, the random variables
$Y\left(t_{1}\right)=\left(T-t_{1}\right) I\left(t_{1}\right), Y\left(t_{2}\right)=\left(T-t_{2}\right) I\left(t_{2}\right), \ldots, Y\left(t_{n}\right)=\left(T-t_{n}\right) I\left(t_{n}\right)$ are jointly normal because $I\left(t_{1}\right), I\left(t_{2}\right), \ldots, I\left(t_{n}\right)$ are jointly normal.
- In particular, Y is a Gaussian process.

$$
Y(t)=(T-t) \int_{0}^{t} \frac{1}{T-u} d W(u), 0 \leq t<T \quad I(t)=\int_{0}^{t} \frac{1}{T-u} d W(u)
$$

Linear combinations of jointly normal random variables are jointly normal.

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- The mean and covariance functions of I are

$$
\begin{aligned}
& m^{I}(t)=0 \quad \begin{array}{lll}
{\left[\frac{1}{T-u}\right]_{0}^{s \wedge t}} & \left.\begin{array}{l}
V=T-\mathrm{T} \\
\mathrm{dV}=\mathrm{du} \\
{\left[V^{-1}\right]}
\end{array}\right]-\mathrm{V}^{-2} d \mathrm{~V}
\end{array} \\
& c^{I}(s, t)=\int_{0}^{s \wedge t} \frac{1}{(T-u)^{2}} d u=\frac{1}{T-s \wedge t}-\frac{1}{T} \text { for all } s, t \in[0, T)
\end{aligned}
$$

- This means that the mean function for Y is $m^{Y}(t)=0$
$\mathrm{I}(\mathrm{t}) \sim \mathrm{N}\left(0, \int_{0}^{t} \Delta^{2}(s) d s\right) c(s, t)=\int_{0}^{s t t} \Delta^{2}(u) d u$
$I(t)=\int_{0}^{t} \frac{1}{T-u} d W(u) \quad Y(t)=(T-t) \int_{0}^{\prime} \frac{1}{T-u} d W(u)$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- To compute the covariance function for Y, we assume for the moment that $0 \leq s \leq t \leq T$ so that
- If we had taken $0 \leq t \leq s<T$, the roles of s and t would have be reversed. In general

$$
c^{Y}(s, t)=s \wedge t-\frac{s t}{T}, \forall s, t \in[0, T) \quad I(t)=\int_{0}^{t} \frac{1}{T-u} d W(u)
$$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- This is the same covariance formula (4.7.3) we obtained for the Brownian bridge.
- Because the mean and covariance functions for Gaussian process completely determine the distribution of the process, we conclude that the process Y has the same distribution as the Brownian bridge from 0 to 0 on [0,T].

$$
\begin{array}{ll}
\hline m(t)=E X(t)=0 & m^{Y}(t)=0 \\
\mathrm{X}(\mathrm{~s}) \mathrm{X}(\mathrm{t}) & \\
c(s, t)^{\prime}=s \wedge t-\frac{s t}{T} & c^{Y}(s, t)=s \wedge t-\frac{s t}{T}
\end{array}
$$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- We now consider the variance
$m^{Y}(t)=0 \quad E Y^{2}(t)=c^{Y}(t, t)=\frac{t(T-t)}{T}, 0<t<T \quad c^{Y}(s, t)=s \wedge t-$
- Note that, as $t \rightarrow T$, this variance converges to 0 .
- As $t \rightarrow T=>$ the random process $Y(t)$ has mean $=0$ $=>$ variance converges to 0 .
- We did not initially define $Y(T)$, but this observation suggests that it makes sense to define $Y(T)=0$.
- If we do that, then $Y(t)$ is continuous at $t=T$.

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

Theorem 4.7.6
Define the process

$$
Y(t)=\left\{\begin{array}{ll}
(T-t) \int_{0}^{t} \frac{1}{T-u} d W(u) & \text { for } 0 \leq t<T \\
0 & \text { for } t
\end{array}=T, ~ \$\right.
$$

Then $Y(t)$ is a continuous Gaussian process on $[0, T]$ and has mean and covariance functions

$$
\begin{aligned}
& m^{Y}(t)=0, t \in[0, T] \\
& c^{Y}(s, t)=s \wedge t-\frac{s t}{T}, \forall s, t \in[0, T]
\end{aligned}
$$

In particular, the process $Y(t)$ has the same distribution as the Brownian bridge from 0 to 0 on [$0, T]$ (Definition 4.7.5)

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- We note that the process $Y(t)$ is adapted to the filtration generated by the Brownian motion $W(t)$.

$$
Y(t)=(T-t) \int_{0}^{t} \frac{1}{T-u} d W(u)
$$

- Compute the stochastic differential of $Y(t)$, which is

$$
Y(t)=(T-t) \int_{0}^{t} \frac{1}{T-u} d W(u)
$$

$$
\begin{align*}
& d Y(t)=\int_{0}^{t} \frac{1}{T-u} d W(u) \cdot d(T-t)+(T-t) \cdot d \int_{0}^{t} \frac{1}{T-u} d W(u) \\
& =-\int_{0}^{t} \frac{1}{T-u} d W(u) \cdot d t+d W(t) \\
& =-\frac{Y(t)}{T-t} d t+d W(t) \\
& I(t)=\int_{0}^{t} \Delta(u) d W(u)(4.2 .11) \\
& d I(t)=\Delta(t) d W(t)(4.2 .12) \tag{4.2.12}\\
& I(t)=\int_{0}^{t} \frac{1}{T-u} d W(u) \\
& \frac{1}{T-t} d W(t)
\end{align*}
$$

4.7.3 Brownian Bridge as a Scaled Stochastic Integral

- If $Y(t)$ is positive as t approaches T, the drift term $-\frac{Y(t)}{T-t} d t$ becomes large in absolute value and is negative.
- This drives $Y(t)$ toward zero.

$$
d Y(t)=-\frac{Y(t)}{T-t} d t+d W(t)
$$

- On the other hand, if $Y(t)$ is negative, the drift term becomes large and positive, and this again drives $Y(t)$ toward zero.
- This strongly suggests, and it is indeed true, that as $t \rightarrow T$ the process $Y(t)$ converges to zero almost surely.

4.7.4 Multidimensional Distribution of the Brownian Bridge

- We fix $a \in \mathrm{R}$ and $b \in \mathrm{R}$ and let $X^{a \rightarrow b}(t)$ denote the Brownian bridge from a to b on $[0, T]$. We also fix $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}<T$. In this section, We compute the joint density of $X^{a \rightarrow b}\left(t_{1}\right), \cdots, X^{a \rightarrow b}\left(t_{n}\right)$.
We recall that the Brownian bridge from a to b has the mean function

$$
m^{a \rightarrow b}(t)=a+\frac{(b-a) t}{T}=\frac{(T-t) a}{T}+\frac{b t}{T}
$$

and covariance function

$$
c(s, t)=s \wedge t-\frac{s t}{T}
$$

When $s \leq t$, we may write this as

$$
c(s, t)=s-\frac{s t}{T}=\frac{s(T-t)}{T}, 0 \leq s \leq t \leq T
$$

To simplify notation, we set $\tau_{j}=T-t_{j}$ so that $\tau_{0}=T$

- We define random variable

$$
Z_{j}=\frac{X^{a \rightarrow b}\left(t_{j}\right)}{\tau_{j}}-\frac{X^{a \rightarrow b}\left(t_{j-1}\right)}{\tau_{j-1}}
$$

Because $X^{a \rightarrow b}\left(t_{1}\right), \cdots, X^{a \rightarrow b}\left(t_{n}\right)$ are jointly normal, so that $Z\left(t_{1}\right), \cdots, Z\left(t_{n}\right)$ are jointly normal. We compute $E Z_{j}, \operatorname{Var}\left(Z_{j}\right)$ and $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)$.

Linear combinations of jointly normal random variables are jointly normal.

$$
\begin{gathered}
E\left(Z_{j}\right)=\frac{1}{\tau_{j}} E X^{a \rightarrow b}\left(t_{j}\right)-\frac{1}{\tau_{j-1}} E X^{a \rightarrow b}\left(t_{j-1}\right)=\frac{\tau_{j}-t_{j}}{T}+\frac{b t_{j}}{T \tau_{j}}-\frac{a}{T}-\frac{b t_{j-1}}{T \tau_{j-1}}=\frac{b t_{j}\left(T-t_{j-1}\right)-b t_{j-1}\left(T-t_{j}\right)}{T \tau_{j} \tau_{j-1}} \\
=\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}} . \\
\frac{\left(T-t_{j}\right) a}{T}+\frac{b t_{j}}{T} \frac{\left(T-t_{j-1}\right) a}{T}+\frac{b t_{j-1}}{T} \\
Z_{j}=\frac{X^{a \rightarrow b}\left(t_{j}\right)}{\tau_{j}}-\frac{X^{a \rightarrow b}\left(t_{j-1}\right)}{\tau_{j-1}} \\
m^{a \rightarrow b}(t)=a+\frac{(b-a) t}{T}=\frac{(T-t) a}{T}+\frac{b t}{T}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(Z_{j}\right)= \frac{1}{\tau_{j}^{2}} \operatorname{Var}\left(X^{a \rightarrow b}\left(t_{j}\right)\right)-\frac{2}{\tau_{j} \tau_{j-1}} \operatorname{Cov}\left(X^{a \rightarrow b}\left(t_{j}\right), X^{a \rightarrow b}\left(t_{j-1}\right)\right)+\frac{1}{\tau_{j-1}^{2}} \operatorname{Var}\left(X^{a \rightarrow b}\left(t_{j-1}\right)\right) \\
&= \frac{1}{\tau_{j}^{2}} c\left(t_{j}, t_{j}\right)-\frac{2}{\tau_{j} \tau_{j-1}} c\left(t_{j}, t_{j-1}\right)+\frac{1}{\tau_{j-1}^{2}} c\left(t_{j-1}, t_{j-1}\right) \\
&= \frac{t_{j}}{T \tau_{j}}-\frac{2 t_{j-1}}{T \tau_{j-1}}+\frac{t_{j-1}}{T \tau_{j-1}}=\frac{t_{j}\left(T-t_{j-1}\right)-2 t_{j-1}\left(T-t_{j}\right)+t_{j-1}\left(T-t_{j}\right)}{T \tau_{j} \tau_{j-1}}=\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}} . \\
& Z_{j}=\frac{X^{a \rightarrow b}\left(t_{j}\right)}{\tau_{j}}-\frac{X^{a \rightarrow b}\left(t_{j-1}\right)}{\tau_{j-1}} \\
& c(s, t)=s-\frac{s t}{T}=\frac{s(T-t)}{T}, 0 \leq s \leq t \leq T \\
& c\left(t_{j-1}, t_{j}\right)=t_{j-1}-\frac{t_{j-1} t_{j}}{T}=\frac{t_{j-1}\left(T-t_{j}\right)}{T}=\frac{t_{j-1} \tau_{j}}{T} \\
& \tau_{j}=T-t_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cov}\left(Z_{i}, Z_{j}\right)=\frac{1}{\tau_{i} \tau_{j}} c\left(t_{i}, t_{j}\right)-\frac{1}{\tau_{i} \tau_{j-1}} c\left(t_{i}, t_{j-1}\right)-\frac{1}{\tau_{i-1} \tau_{j}} c\left(t_{i-1}, t_{j}\right)+\frac{1}{\tau_{i-1} \tau_{j-1}} c\left(t_{i-1}, t_{j-1}\right) \\
&=\frac{t_{i}\left(T-t_{j}\right)}{T \tau_{i} \tau_{j}}-\frac{t_{i}\left(T-t_{j-1}\right)}{T \tau_{i} \hbar_{j-1}}-\frac{t_{i-1}\left(T-t_{j}\right)}{T \tau_{i-1} \tau_{j}}+\frac{t_{i-1}\left(T-t_{j-1}\right)}{T \tau_{i-1} \tau_{k-1}}=0 . \\
& \tau_{j}=T-t_{j} \\
& Z_{j}=\frac{X^{a \rightarrow b}\left(t_{j}\right)}{\tau_{j}}-\frac{X^{a \rightarrow b}\left(t_{j-1}\right)}{\tau_{j-1}} \\
& c(s, t)=s-\frac{s t}{T}=\frac{s(T-t)}{T}, 0 \leq s \leq t \leq T \\
& c\left(t_{j-1}, t_{j}\right)=t_{j-1}-\frac{t_{j-1} t_{j}}{T}=\frac{t_{j-1}\left(T-t_{j}\right)}{T}
\end{aligned}
$$

- $Z\left(t_{1}\right), \cdots, Z\left(t_{n}\right)$ are jointly normal.
- $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)=0$.
$f_{X, Y}(x, y)$
$=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right.\right.$

$$
\begin{equation*}
\left.\left.+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \tag{2.2.17}
\end{equation*}
$$

$\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0 \Leftrightarrow \mathrm{X}, \mathrm{Y}$ are independent

- The normal random variable Z_{1}, \ldots, Z_{n} are independent.
－So we conclude that the normal random variable Z_{1}, \ldots, Z_{n} are
independent，and we can write down their joint density，which is
mean

$$
\begin{aligned}
& E\left(Z_{j}\right)=\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}} \\
& \operatorname{Var}\left(Z_{j}\right)=\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}
\end{aligned}
$$

接下來把 z 的部份做變數變換
we make the change of variables

$$
z_{j}=\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}, \quad j=1, \ldots, n
$$

- Where $\frac{X^{a \rightarrow b}(0)=\mathrm{a}}{=a}$, to find joint density for $X^{a \rightarrow b}\left(t_{1}\right), \cdots, X^{a \rightarrow b}\left(t_{n}\right)$. We work first on the sum in the exponent to see the effect of this change of variables.

$$
\begin{aligned}
f_{Z\left(t_{1}\right), \ldots, Z\left(t_{n}\right)}\left(z_{1}, \ldots, z_{n}\right) & =\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi \frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}} \exp \left\{-\frac{1}{2} \cdot \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}\right\} \\
& =\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}\right\} \cdot \prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi \frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}}
\end{aligned}
$$

- We have

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{-j} t_{j-1}}{\tau_{j} \tau_{j-1}}} z_{j}=\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}} \\
& =\sum_{j=1}^{n} \frac{\tau_{j} \tau_{j-1}}{t_{j}-t_{j-1}}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}-\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}\right)^{2} \\
& =\sum_{j=1}^{n} \frac{\tau_{j} \tau_{j-1}}{t_{j}-t_{j-1}}\left(\frac{x_{j}^{2}}{\tau_{j}^{2}}+\frac{x_{j-1}^{2}}{\tau_{j-1}^{2}}+\frac{b^{2}\left(t_{j}-t_{j-1}\right)^{2}}{\tau_{j}^{2} \tau_{j-1}^{2}}-\frac{2 x_{j} x_{j-1}}{\tau_{j} \tau_{j-1}}\right. \\
& \\
& \left.\quad-\frac{2 x_{j} b\left(t_{j}-t_{j-1}\right)}{\tau_{j}^{2} \tau_{j-1}}+\frac{2 x_{j-1} b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}^{2}}\right)
\end{aligned}
$$

$$
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c
$$

$$
\begin{aligned}
=\sum_{j=1}^{n} \frac{\tau_{j} \tau_{j-1}}{t_{j}-t_{j-1}}\left(\frac{x_{j}^{2}}{\tau_{j}^{2}}+\right. & \frac{x_{j-1}^{2}}{\tau_{j-1}^{2}}+\frac{b^{2}\left(t_{j}-t_{j-1}\right)^{2}}{\tau_{j}^{2} \tau_{j-1}^{2}}-\frac{2 x_{j} x_{j-1}}{\tau_{j} \tau_{j-1}} \\
& \left.-\frac{2 x_{j} b\left(t_{j}-t_{j-1}\right)}{\tau_{j}^{2} \tau_{j-1}}+\frac{2 x_{j-1} b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}^{2}}\right) \\
=\sum_{j=1}^{n}\left(\frac{\tau_{j-1} x_{j}^{2}}{\tau_{j}\left(t_{j}-t_{j-1}\right)}+\right. & \frac{\tau_{j} x_{j-1}^{2}}{\tau_{j-1}\left(t_{j}-t_{j-1}\right)}+\frac{b^{2}\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}-\frac{2 x_{j} x_{j-1}}{t_{j}-t_{j-1}} \\
& \left.-\frac{2 x_{j} b}{\tau_{j}}+\frac{2 x_{j-1} b}{\tau_{j-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left(\frac{\tau_{j-1} x_{j}^{2}}{\tau_{j}\left(t_{j}-t_{j-1}\right)}+\frac{\tau_{j} x_{j-1}^{2}}{\tau_{j-1}\left(t_{j}-t_{j-1}\right)}+\frac{b^{2}\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}-\frac{2 x_{j} x_{j-1}}{t_{j}-t_{j-1}}\right. \\
& \left.-\frac{2 x_{j} b}{\tau_{j}}+\frac{2 x_{j-1} b}{\tau_{j-1}}\right) \\
& =\sum_{j=1}^{n} \frac{\left[\frac{x_{j}^{2}}{t_{j}-t_{j-1}}\left(1+\frac{\tau_{j-1}-\tau_{j}}{\tau_{j}}\right)+\frac{x_{j-1}^{2}}{t_{j}-t_{j-1}}\left(1-\frac{\tau_{j-1}-\tau_{j}}{\tau_{j-1}}\right)\right.}{\left.-\frac{2 x_{j} x_{j-1}}{t_{j}-t_{j-1}}\right]+b^{2} \sum_{j=1}^{n}\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)-2 b \sum_{j=1}^{n}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}\right) .} \\
& 1+\frac{\tau_{j-1}-\tau_{j}}{\tau_{j}}=\frac{\tau_{j}+\tau_{j_{-1-}} \tau_{j}}{\tau_{j}}=\frac{\tau_{j_{-1}}}{\tau_{j}} \quad\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)=\frac{\tau_{j_{-1}-\tau_{j}}}{\tau_{j} \tau_{j_{-1}}}=\frac{t_{j}-t_{j_{-1}}}{\tau_{j} \tau_{j-1}} \\
& 1-\frac{\tau_{j-1}-\tau_{j}}{\tau_{j-1}}=\frac{\tau_{j-1-} \tau_{j-1+} \tau_{j}}{\tau_{j-1}}=\frac{\tau_{j}}{\tau_{j_{-1}}} \quad \tau_{j-1}-\tau_{j}=\left(T-t_{j-1}\right)-\left(T-t_{j}\right)=t_{j}-t_{j-1}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{j-1}-\tau_{j}=\left(T-t_{j-1}\right)-\left(T-t_{j}\right)=t_{j}-t_{j-1} \\
& =\sum_{j=1}^{n} \frac{\left[\frac{x_{j}^{2}}{\frac{t_{j}-t_{j-1}}{}\left(1+\frac{\tau_{j-1}-\tau_{j}}{\tau_{j}}\right)}+\frac{\frac{x_{j-1}^{2}}{t_{j}-t_{j-1}}\left(1-\frac{\tau_{j-1}-\tau_{j}}{\tau_{j-1}}\right)}{\left.-\frac{2 x}{t_{j}-x_{j-1}}\right]+b^{2} \sum_{j=1}^{n}\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)-2 b \sum_{j=1}^{n}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}\right)}\right.}{} \\
& =\sum_{j=1}^{n}\left[\frac{x_{j}^{2}-2 x_{j} x_{j-1}+x_{j-1}^{2}}{t_{j}-t_{j-1}}\right]+\sum_{j=1}^{n} \underline{\left(\frac{x_{j}^{2}}{\tau_{j}}-\frac{x_{j-1}^{2}}{\tau_{j-1}}\right)} \\
& +b^{2} \sum_{j=1}^{n}\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)-2 b \sum_{j=1}^{n}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left[\frac{x_{j}^{2}-2 x_{j} x_{j-1}+x_{j-1}^{2}}{t_{j}-t_{j-1}}\right]+\sum_{j=1}^{n} \underline{\left(\frac{x_{j}^{2}}{\tau_{j}}-\frac{x_{j-1}^{2}}{\tau_{j-1}}\right)} \\
& +b^{2} \sum_{j=1}^{n}\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)-2 b \sum_{j=1}^{n}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}\right) \\
& =\sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}+\frac{x_{n}^{2}}{T-t_{n}}-\frac{a^{2}}{T}+b^{2}\left(\frac{1}{T-t_{n}}-\frac{1}{T}\right) \\
& -2 b\left(\frac{x_{n}}{T-t_{n}}-\frac{a}{T}\right) \\
& \tau_{j}=T-t_{j} \quad x_{0}=a \\
& \sum_{j=1}^{n}\left(\frac{x_{j}^{2}}{\tau_{j}}-\frac{x_{j-1}^{2}}{\tau_{j-1}}\right)=\left(\frac{x_{1}^{2}}{z_{1}}-\frac{x_{0}{ }^{2}}{\tau_{0}}\right)+\left(\frac{x^{\not 2}}{\tau_{2}}-\frac{x_{1}^{22}}{\tau_{1}}\right)+\ldots+\left(\frac{x_{n}{ }^{2}}{\tau_{n}}-\frac{x_{n-\mu}{ }^{2}}{\tau / n-1}\right)=\left(\frac{x_{n}{ }^{2}}{\tau_{n}}-\frac{x_{0}{ }^{2}}{\tau_{0}}\right) \\
& \sum_{j=1}^{n}\left(\frac{1}{\tau_{j}}-\frac{1}{\tau_{j-1}}\right)=\left(\frac{1}{\tau_{1}}-\frac{1}{\tau_{0}}\right)+\left(\frac{1}{\tau_{2}}-\frac{1}{\tau_{1}}\right)+\ldots+\left(\frac{1}{\tau_{n}}-\frac{1}{\tau_{n-1}}\right)=\left(\frac{1}{\tau_{n}}-\frac{1}{\tau_{0}}\right) \\
& \sum_{j=1}^{n}\left(\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}\right)=\left(\frac{x_{1}}{\tau_{1}}-\frac{x_{0}}{\tau_{0}}\right)+\left(\frac{x_{2}}{\tau / 2}-\frac{x_{1}}{\tau_{1}}\right)+\ldots+\left(\frac{x_{n}}{\tau_{n}}-\frac{x_{n}-1}{\tau_{n-1}}\right)=\left(\frac{x_{n}}{\tau_{n}}-\frac{x_{0}}{\tau_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}+\frac{x_{n}^{2}}{T-t_{n}}-\frac{a^{2}}{T}+b^{2}\left(\frac{1}{T-t_{n}}-\frac{1}{T}\right) \\
& \left.=\sum_{j=1}^{-2 b\left(\frac{x_{n}}{T-t_{n}}\right.}-\frac{a}{T}\right) \\
& \frac{\overline{\left(x_{j}-x_{j-1}\right)^{2}}}{t_{j}-t_{j-1}}+\frac{\left(b-x_{n}\right)^{2}}{T-t_{n}}-\frac{(b-a)^{2}}{T} .
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n} \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j}-1\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}\right\}\right. \\
&=\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\}
\end{aligned}
$$

- To change a density, we also need to account for the Jacobian of the change of variables. In this case, we have

$$
\begin{aligned}
& \frac{\partial z_{j}}{\partial x_{j}}=\frac{1}{\tau_{j}}, \quad j=1, \ldots, n, \\
& \frac{\partial z_{j}}{\partial x_{j-1}}=-\frac{1}{\tau_{j-1}}, \quad j=2, \ldots, n,
\end{aligned}
$$

$$
z_{j}=\frac{x_{j}}{\tau_{j}}-\frac{x_{j-1}}{\tau_{j-1}}
$$

and all other partial derivatives are zero. This leads to the Jacobian matrix $\quad J=\left[\begin{array}{cccc}\frac{1}{\tau_{1}} & 0 & \cdots & 0 \\ -\frac{1}{\tau_{1}} & \frac{1}{\tau_{2}} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \frac{1}{\tau_{n}}\end{array}\right]_{53}$

- Whose determinant is $\prod_{j=1}^{n} \frac{1}{\tau_{j}}$. Multiplying $f_{Z\left(t_{1}\right) \ldots Z\left(t_{n}\right)}\left(z_{1}, \ldots, z_{n}\right)$ by this determinant and using the change of variables worked out above, we obtain the density for $X^{a \rightarrow b}\left(t_{1}\right), \cdots, X^{a \rightarrow b}\left(t_{n}\right)$,

$$
J=\left[\begin{array}{cccc}
\frac{1}{\tau_{1}} & 0 & \cdots & 0 \\
-\frac{1}{\tau_{1}} & \frac{1}{\tau_{2}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{1}{\tau_{n}}
\end{array}\right]
$$

$$
f_{X^{a \rightarrow b}\left(t_{1}\right), \ldots, X^{\alpha \rightarrow b}\left(t_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
=\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi\left(t_{j}-t_{j-1}\right)}} \sqrt{\frac{\tau_{j-1}}{\tau_{j}}}
$$

$$
\cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\}
$$

$$
f_{Z\left(t_{1}\right), \ldots, Z\left(t_{n}\right)}\left(z_{1}, \ldots, z_{n}\right)=\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j-1}\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}\right\} \cdot \prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi \frac{t_{j}-t_{j-1}}{\tau_{j} \tau_{j-1}}}}
$$

$$
\begin{aligned}
\exp \{- & \left.\frac{1}{2} \sum_{j=1}^{n} \frac{\left(z_{j}-\frac{b\left(t_{j}-t_{j}-1\right)}{\tau_{j} \tau_{j-1}}\right)^{2}}{\frac{t_{2}-t_{j-1}}{\tau_{j} \tau_{j-1}}}\right\} \\
& =\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
&= \prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi\left(t_{j}-t_{j-1}\right)}} \sqrt{\frac{\tau_{j-1}}{\tau_{j}}} \\
& \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\} \\
&= \sqrt{\frac{T}{T-t_{n}}} \cdot \prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi\left(t_{j}-t_{j-1}\right)}} \\
& \tau_{\tau_{j}=T-t_{j}}^{u} \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\} \\
& \prod_{j=1}^{n} \sqrt{\frac{\tau_{j-1}}{\tau_{j}}}=\sqrt{\frac{\tau_{0}}{\tau_{1}}} \times \sqrt{\frac{\tau_{1}}{\tau_{2}}} \times \ldots \times \sqrt{\frac{\tau_{n_{-1}}}{\tau_{n}}}=\sqrt{\frac{\tau_{0}}{\tau_{n}}}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{\sqrt{\frac{T}{T-t_{n}}} \cdot \prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi\left(t_{j}-t_{j-1}\right)}}}{} \times \sqrt{\sqrt{\frac{2 \pi}{2 \pi}}} \\
& \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}-\frac{\left(b-x_{n}\right)^{2}}{2\left(T-t_{n}\right)}+\frac{(b-a)^{2}}{2 T}\right\} \\
= & \frac{p\left(T-t_{n,} x_{n}, b\right)}{p(T, a, b)} \prod_{j=1}^{n} p\left(t_{j}-t_{j-1}, x_{j-1}, x_{j}\right), \tag{4.7.6}
\end{align*}
$$

$$
p(\tau, x, y)=\frac{1}{\sqrt{2 \pi \tau}} \exp \left\{-\frac{(y-x)^{2}}{2 \tau}\right\}
$$

is the transition density for Brownian motion. 課本p. 108

4.7.5 Brownian Bridge as a Conditioned Brownian Motion

- The joint density (4.7.6) for $X^{a \rightarrow b}\left(t_{1}\right), \cdots, X^{a \rightarrow b}\left(t_{n}\right)$ permits us to give one more interpretation for Brownian bridge from a to b on $[0, \mathrm{~T}]$.
It is a Brownian motion $W(t)$ on this time interval, starting at $W(0)=a$ and conditioned to arrive at b at time T (i.e., conditioned on $W(T)=b$). Let $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}<T$ be given. The joint density of $W\left(t_{1}\right), \ldots, W\left(t_{n}\right), W(T)$ is

$$
\begin{align*}
& f_{W\left(t_{1}\right) \ldots W\left(t_{n}\right), W(T)}\left(x_{1}, \ldots, x_{n}, b\right)=p\left(T-t_{n}, x_{n}, b\right) \prod_{j=1}^{n} p\left(t_{j}-t_{j-1}, x_{j-1}, x_{j}\right) \\
& , \quad \text { where } W(0)=x_{0}=a \tag{4.7.7}
\end{align*}
$$

This is because $p\left(t_{1}-t_{0}, x_{0}, x_{1}\right)=p\left(t_{1}, a, x_{1}\right)$ is the density for the Brownian motion going from $W(0)=a$ to $W\left(t_{1}\right)=x_{1}$ in the time between $t=0$ and $t=t_{1}$. Similarly, $p\left(t_{2}-t_{1}, x_{1}, x_{2}\right)$ is the density for going from $W\left(t_{1}\right)=x_{1}$ to $W\left(t_{2}\right)=x_{2}$ between time $t=t_{1}$ and $t=t_{2}$. The joint density for $W\left(t_{1}\right)$ and $W\left(t_{2}\right)$ is then the product

$$
p\left(t_{1}, a, x_{1}\right) p\left(t_{2}-t_{1}, x_{1}, x_{2}\right)
$$

Continuing in this way, we obtain the joint density (4.7.7).

The marginal density of $W(T)$ is $p(T, a, b)$.
So, the density of $W\left(t_{1}\right), \ldots, W\left(t_{n}\right)$ conditioned on $W(T)=b$ is thus the quotient
marginal density of $\mathrm{W}(\mathrm{T}) p(T, a, b) \quad \prod_{j=1}^{p\left(T-t_{n}, x_{n}, b\right)} \prod_{j}^{n} p\left(t_{j}-t_{j-1}, x_{j-1}, x_{j}\right) \begin{aligned} & \text { joint density of } \\ & \mathrm{W}\left(\mathrm{t}_{1}\right), \ldots, \mathrm{W}\left(\mathrm{t}_{\mathrm{n}}\right), \\ & \mathrm{W}(\mathrm{T})\end{aligned}$
and this is $f_{X^{a \rightarrow b}\left(t_{1}\right), \ldots, X^{a \rightarrow b}\left(t_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)$ of (4.7.6).
Finally, let us define

$$
M^{a \rightarrow b}(T)=\max _{0 \leq \leq \leq T} X^{a \rightarrow b}(t)
$$

to be the maximum value obtained by the Brownian bridge from a to b on $[0, \mathrm{~T}]$. This random variable has the following distribution.

Corollary 4.7.7.

The density of $M^{a \rightarrow b}(T)$ is
Brownian bridge from a to b on $[0, \mathrm{~T}] \longrightarrow$ a Brownian motion $\mathrm{W}(\mathrm{t})$ on this time interval, starting at $\mathrm{W}(0)=\mathrm{a}$ and conditioned on $\mathrm{W}(\mathrm{T})=\mathrm{b}$

$$
\begin{equation*}
f_{M^{a \rightarrow b}(T)}(y)=\frac{2(2 y-b-a)}{T} e^{-\frac{2}{T}(y-a)(y-b)}, \quad y>\max \{a, b\} . \tag{4.7.8}
\end{equation*}
$$

Proof: Because the Brownian bridge from 0 to w on $[0, T]$ is a Brownian motion conditioned on $W(T)=w$, the maximum of $X^{0 \rightarrow w}$ on $[0, T]$ is the maximum of W on $[0, T]$ conditioned on $W(T)=w$. Therefore, the density of $M^{0 \rightarrow w}(T)$ was computed in Corollary 3.7.4 and is

$$
\begin{equation*}
f_{M^{0 \rightarrow w_{(T)}}}(m)=\frac{2(2 m-w)}{T} e^{-\frac{2 m(m-w)}{T}} \quad, \quad w<m, m>0 . \tag{4.7.9}
\end{equation*}
$$

Corollary 3.7.4. The conditional distribution of $(M(t))$ given $W(t)=w$ is the maximum of the Brownian motion on $[0, t$]

$$
f_{M(t) \mid \boldsymbol{W}(t)}(m \mid w)=\frac{2(2 m-w)}{t} e^{-\frac{2 m(m-w)}{t}}, w \leq m, m>0 .
$$

Corollary 4.7.7.

The density of $M^{a \rightarrow b}(T)$ is

$$
\begin{equation*}
f_{M^{a \rightarrow b}(T)}(y)=\frac{2(2 y-b-a)}{T} e^{-\frac{2}{T}(y-a)(y-b)} \quad, \quad y>\max \{a, b\} . \tag{4.7.8}
\end{equation*}
$$

Proof : Because the Brownian bridge from 0 to w on $[0, T]$ is a Brownian motion conditioned on $W(T)=w$, the maximum of $X^{0 \rightarrow w}$ on $[0, T]$ is the maximum of W on $[0, T]$ conditioned on $W(T)=w$. Therefore, the density of $M^{0 \rightarrow w}(T)$ was computed in Corollary 3.7.4 and is

$$
\begin{equation*}
f_{M^{0 \rightarrow w}(T)}(m)=\frac{2(2 m-w)}{T} e^{-\frac{2 m(m-w)}{T}} \quad, \quad w<m, m>0 . \tag{4.7.9}
\end{equation*}
$$

The density of $f_{M^{n \rightarrow h}(\mathcal{T}}(y)$ can be obtained by translating from the initial condition $W(0)=a$ to $W(0)=0$ and using (4.7.9). In particular, in (4.7.9) we replace m by $y-a$ and replace w by $b-a$. This result in (4.7.8).

